12,323 research outputs found

    Measuring Galaxy Star Formation Rates From Integrated Photometry: Insights from Color-Magnitude Diagrams of Resolved Stars

    Full text link
    We use empirical star formation histories (SFHs), measured from HST-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of ~50 nearby dwarf galaxies (6.5 < log M/M_* < 8.5, with metallicities ~10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared (NIR) and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6micron and 4.5micron bands, we find that modeled SEDs systematically over-predict observed luminosities by up to ~0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of ~2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5% to100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.Comment: 22 pages, 15 figures, ApJ accepte

    Numerical Simulation of the Trapping Reaction with Mobile and Reacting Traps

    Get PDF
    We study a variation of the trapping reaction, A+B→A, in which both the traps (A) and the particles (B) undergo diffusion, and the traps upon meeting react according to A+A→0 or A. This two-species reaction-diffusion system is known to exhibit a nontrivial decay exponent for the B particles, and recently renormalization group methods have predicted an anomalous dimension in the BB correlation function. To test these predictions, we develop a computer simulation method, motivated by the technique of Mehra and Grassberger [Phys. Rev. E 65, 050101(R) (2002)], that determines the complete probability distribution of the B particles for a given realization of the A-particle dynamics, thus providing a significant increase in the quality of statistics. Our numerical results indeed reveal the anomalous dimension predicted by the renormalization group, and compare well quantitatively to precisely known values in cases where the problem can be related to a four-walker problem

    Empirical ugri-UBVRc Transformations for Galaxies

    Full text link
    We present empirical color transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colors are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy color scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colors which are visible in observed color-color trends. The LVL-based galaxygalaxy transformations show no systematic color offsets and reproduce the observed color-color galaxy trends.Comment: Accepted for publication in MNRAS (9 pages, 6 figures, 4 tables
    corecore